Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
2.
Cell Commun Signal ; 22(1): 198, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549115

In normal colon tissue, oestrogen receptor alpha (ERα) is expressed at low levels, while oestrogen receptor beta (ERß) is considered the dominant subtype. However, in colon carcinomas, the ERα/ß ratio is often increased, an observation that prompted us to further investigate ERα's role in colorectal cancer (CRC). Here, we assessed ERα nuclear expression in 351 CRC patients. Among them, 119 exhibited positive ERα nuclear expression, which was significantly higher in cancer tissues than in matched normal tissues. Importantly, patients with positive nuclear ERα expression had a poor prognosis. Furthermore, positive ERα expression correlated with increased levels of the G-protein coupled cysteinyl leukotriene receptor 1 (CysLT1R) and nuclear ß-catenin, both known tumour promoters. In mouse models, ERα expression was decreased in Cysltr1-/- CAC (colitis-associated colon cancer) mice but increased in ApcMin/+ mice with wild-type Cysltr1. In cell experiments, an ERα-specific agonist (PPT) increased cell survival via WNT/ß-catenin signalling. ERα activation also promoted metastasis in a zebrafish xenograft model by affecting the tight junction proteins ZO-1 and Occludin. Pharmacological blockade or siRNA silencing of ERα limited cell survival and metastasis while restoring tight junction protein expression. In conclusion, these findings highlight the potential of ERα as a prognostic marker for CRC and its role in metastasis.


Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Estrogen Receptor alpha , beta Catenin/metabolism , Zebrafish/metabolism , Colonic Neoplasms/pathology , Wnt Signaling Pathway , Estrogen Receptor beta/genetics , Disease Models, Animal , Colorectal Neoplasms/pathology
3.
Nat Commun ; 14(1): 4453, 2023 07 24.
Article En | MEDLINE | ID: mdl-37488105

Bioelectronics can potentially complement classical therapies in nonchronic treatments, such as immunotherapy and cancer. In addition to functionality, minimally invasive implantation methods and bioresorbable materials are central to nonchronic treatments. The latter avoids the need for surgical removal after disease relief. Self-organizing substrate-free organic electrodes meet these criteria and integrate seamlessly into dynamic biological systems in ways difficult for classical rigid solid-state electronics. Here we place bioresorbable electrodes with a brain-matched shear modulus-made from water-dispersed nanoparticles in the brain-in the targeted area using a capillary thinner than a human hair. Thereafter, we show that an optional auxiliary module grows dendrites from the installed conductive structure to seamlessly embed neurons and modify the electrode's volume properties. We demonstrate that these soft electrodes set off a controlled cellular response in the brain when relaying external stimuli and that the biocompatible materials show no tissue damage after bioresorption. These findings encourage further investigation of temporary organic bioelectronics for nonchronic treatments assembled in vivo.


Absorbable Implants , Biocompatible Materials , Humans , Biocompatible Materials/chemistry , Electrodes , Brain , Electric Conductivity , Electronics
4.
Science ; 379(6634): 795-802, 2023 02 24.
Article En | MEDLINE | ID: mdl-36821679

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Biopolymers , Brain , Electric Conductivity , Enzymes , Peripheral Nervous System , Animals , Biopolymers/biosynthesis , Brain/enzymology , Electrodes , Electronics , Enzymes/metabolism , Leeches , Models, Animal , Peripheral Nervous System/enzymology , Polymerization , Zebrafish
5.
Chem Mater ; 34(6): 2752-2763, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35360437

Injectable bioelectronics could become an alternative or a complement to traditional drug treatments. To this end, a new self-doped p-type conducting PEDOT-S copolymer (A5) was synthesized. This copolymer formed highly water-dispersed nanoparticles and aggregated into a mixed ion-electron conducting hydrogel when injected into a tissue model. First, we synthetically repeated most of the published methods for PEDOT-S at the lab scale. Surprisingly, analysis using high-resolution matrix-assisted laser desorption ionization-mass spectroscopy showed that almost all the methods generated PEDOT-S derivatives with the same polymer lengths (i.e., oligomers, seven to eight monomers in average); thus, the polymer length cannot account for the differences in the conductivities reported earlier. The main difference, however, was that some methods generated an unintentional copolymer P(EDOT-S/EDOT-OH) that is more prone to aggregate and display higher conductivities in general than the PEDOT-S homopolymer. Based on this, we synthesized the PEDOT-S derivative A5, that displayed the highest film conductivity (33 S cm-1) among all PEDOT-S derivatives synthesized. Injecting A5 nanoparticles into the agarose gel cast with a physiological buffer generated a stable and highly conductive hydrogel (1-5 S cm-1), where no conductive structures were seen in agarose with the other PEDOT-S derivatives. Furthermore, the ion-treated A5 hydrogel remained stable and maintained initial conductivities for 7 months (the longest period tested) in pure water, and A5 mixed with Fe3O4 nanoparticles generated a magnetoconductive relay device in water. Thus, we have successfully synthesized a water-processable, syringe-injectable, and self-doped PEDOT-S polymer capable of forming a conductive hydrogel in tissue mimics, thereby paving a way for future applications within in vivo electronics.

6.
Br J Cancer ; 126(4): 586-597, 2022 03.
Article En | MEDLINE | ID: mdl-34750492

BACKGROUND: Despite intense research, the prognosis for patients with advanced colorectal cancer (CRC) remains poor. The prostaglandin D2 receptors DP1 and DP2 are explored here as potential therapeutic targets for advanced CRC. METHODS: A CRC cohort was analysed to determine whether DP1 and DP2 receptor expression correlates with patient survival. Four colon cancer cell lines and a zebrafish metastasis model were used to explore how DP1/DP2 receptor expression correlates with CRC progression. RESULTS: Analysis of the clinical CRC cohort revealed high DP2 expression in tumour tissue, whereas DP1 expression was low. High DP2 expression negatively correlated with overall survival. Other pathological indicators, such as TNM stage and metastasis, positively correlated with DP2 but not DP1 expression. In accordance, the in vitro results showed high DP2 expression in four CC-cell lines, but only one expressed DP1. DP2 stimulation resulted in increased proliferation, p-ERK1/2 and VEGF expression/secretion. DP2-stimulated cells exhibited increased migration in the zebrafish metastasis model. CONCLUSION: Our results support DP2 receptor expression and signalling as a therapeutic target in CRC progression based on its expression in CRC tissue correlating with poor patient survival and that it triggers proliferation, p-ERK1/2 and VEGF expression and release and increased metastatic activity in CC-cells.


Colorectal Neoplasms/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Male , Neoplasm Metastasis , Neoplasm Staging , Neoplasm Transplantation , Survival Analysis , Zebrafish
7.
Oncogenesis ; 9(8): 74, 2020 Aug 19.
Article En | MEDLINE | ID: mdl-32814764

Inflammation is an established risk factor for colorectal cancer. We and others have shown that colorectal cancer patients with elevated cysteinyl leukotriene receptor 2 (CysLT2R) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) levels exhibit good prognoses. However, both CysLT2R and 15-PGDH, which act as tumour suppressors, are often suppressed in colorectal cancer. We previously reported that leukotriene C4 (LTC4)-induced differentiation in colon cancer via CysLT2R signalling. Here, we investigated the involvement of Hedgehog (Hh)-GLI1 signalling, which is often hyperactivated in colorectal cancer. We found that the majority of colorectal cancer patients had high-GLI1 expression, which was negatively correlated with CysLT2R, 15-PGDH, and Mucin-2 and overall survival compared with the low-GLI1 group. LTC4-induced 15-PGDH downregulated both the mRNA and protein expression of GLI1 in a protein kinase A (PKA)-dependent manner. Interestingly, the LTC4-induced increase in differentiation markers and reduction in Wnt targets remained unaltered in GLI1-knockdown cells. The restoration of GLI1 in 15-PGDH-knockdown cells did not ameliorate the LTC4-induced effects, indicating the importance of both 15-PGDH and GLI1. LTC4-mediated reduction in the DCLK1 and LGR5 stemness markers in colonospheres was abolished in cells lacking 15-PGDH or GLI1. Both DCLK1 and LGR5 were highly increased in tumour tissue compared with the matched controls. Reduced Mucin-2 levels were observed both in zebrafish xenografts with GLI1-knockdown cells and in the cysltr2-/- colitis-associated colon cancer (CAC) mouse model. Furthermore, GLI1 expression was positively correlated with stemness and negatively correlated with differentiation in CRC patients when comparing tumour and mucosal tissues. In conclusion, restoring 15-PGDH expression via CysLT2R activation might benefit colorectal cancer patients.

8.
ACS Chem Neurosci ; 11(2): 173-183, 2020 01 15.
Article En | MEDLINE | ID: mdl-31850734

Current antipsychotic drugs are notably ineffective at addressing the cognitive deficits associated with schizophrenia. N-Desmethylclozapine (NDMC), the major metabolite of clozapine, displays muscarinic M1 receptor (M1) agonism, an activity associated with improvement in cognitive functioning. Preclinical and clinical data support that M1 agonism may be a desired activity in antipsychotic drugs. However, NDMC failed clinical phase II studies in acute psychotic patients. NDMC analogues were synthesized to establish a structure-activity relationship (SAR) at the M1 receptor as an indication of potential procognitive properties. In vitro evaluation revealed a narrow SAR in which M1 agonist activity was established by functionalization in the 4- and 8-positions in the tricyclic core. In vivo behavioral response profiles were used to evaluate antipsychotic efficacy and exposure in zebrafish larvae and peripheral side effect related M1 activity in adult zebrafish. The NDMC analogue 13f demonstrated antipsychotic activity similar to clozapine including M1 agonist activity. Cotreatment with trospium chloride, an M1 peripheral acting antagonist, counteracted peripheral side effects. Thus, the NDMC analogue 13f, in combination with a peripherally acting anticholinergic compound, could be suitable for further development as an antipsychotic compound with potential procognitive activity.


Antipsychotic Agents/pharmacology , Drug Discovery/methods , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/chemistry , Animals , Clozapine/analogs & derivatives , Structure-Activity Relationship , Zebrafish
9.
ACS Chem Neurosci ; 9(8): 1994-2000, 2018 08 15.
Article En | MEDLINE | ID: mdl-29350027

Studying how and where drugs are metabolized in the brain is challenging. In an entire organism, peripheral metabolism produces many of the same metabolites as those in the brain, and many of these metabolites can cross the blood-brain barrier from the periphery, thus making the relative contributions of hepatic and brain metabolism difficult to study in vivo. In addition, drugs and metabolites contained in ventricles and in the residual blood of capillaries in the brain may overestimate drugs' and metabolites' concentrations in the brain. In this study, we examine locusts and zebrafish using matrix assisted laser desorption ionization mass spectrometry imaging to study brain metabolism and distribution. These animal models are cost-effective and ethically sound for initial drug development studies.


Grasshoppers , Molecular Imaging/methods , Neurons/drug effects , Neurons/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Zebrafish , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/metabolism , Capillaries/drug effects , Capillaries/metabolism , Clozapine/analogs & derivatives , Clozapine/metabolism , Clozapine/pharmacology , Drug Development/methods , Grasshoppers/drug effects , Grasshoppers/metabolism , Zebrafish/metabolism
10.
ACS Chem Neurosci ; 7(5): 668-80, 2016 05 18.
Article En | MEDLINE | ID: mdl-26930271

The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery.


Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Models, Animal , Animals , Antipsychotic Agents/pharmacology , Blood-Brain Barrier/drug effects , Brain/drug effects , Grasshoppers , Permeability/drug effects
11.
Pharmacol Res Perspect ; 2(4): e00050, 2014 Aug.
Article En | MEDLINE | ID: mdl-25505597

In earlier studies insects were proposed as suitable models for vertebrate blood-brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain barrier of the desert locust (Schistocerca gregaria). In an in vivo study on the locust, we found an increased uptake of the two well-known Pgp substrates, rhodamine 123 and loperamide after co-administration with the Pgp inhibitors cyclosporine A or verapamil. Furthermore, ex vivo studies on isolated locust brains demonstrated differences in permeation of high and low permeability compounds. The vertebrate Pgp inhibitor verapamil did not affect the uptake of passively diffusing compounds but significantly increased the brain uptake of Pgp substrates in the ex vivo model. In addition, studies at 2°C and 30°C showed differences in brain uptake between Pgp-effluxed and passively diffusing compounds. The transcriptome data show a high degree of sequence identity of the locust Pgp transporter protein sequences to the human Pgp sequence (37%), as well as the presence of conserved domains. As in vertebrates, the locust brain-barrier function is morphologically confined to one specific cell layer and by using a whole-brain ex vivo drug exposure technique our locust model may retain the major cues that maintain and modulate the physiological function of the brain barrier. We show that the locust model has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.

12.
J Pharmacol Exp Ther ; 346(2): 211-8, 2013 Aug.
Article En | MEDLINE | ID: mdl-23671124

The aim of the present study was to develop a blood-brain barrier (BBB) permeability model that is applicable in the drug discovery phase. The BBB ensures proper neural function, but it restricts many drugs from entering the brain, and this complicates the development of new drugs against central nervous system diseases. Many in vitro models have been developed to predict BBB permeability, but the permeability characteristics of the human BBB are notoriously complex and hard to predict. Consequently, one single suitable BBB permeability screening model, which is generally applicable in the early drug discovery phase, does not yet exist. A new refined ex vivo insect-based BBB screening model that uses an intact, viable whole brain under controlled in vitro-like exposure conditions is presented. This model uses intact brains from desert locusts, which are placed in a well containing the compound solubilized in an insect buffer. After a limited time, the brain is removed and the compound concentration in the brain is measured by conventional liquid chromatography-mass spectrometry. The data presented here include 25 known drugs, and the data show that the ex vivo insect model can be used to measure the brain uptake over the hemolymph-brain barrier of drugs and that the brain uptake shows linear correlation with in situ perfusion data obtained in vertebrates. Moreover, this study shows that the insect ex vivo model is able to identify P-glycoprotein (Pgp) substrates, and the model allows differentiation between low-permeability compounds and compounds that are Pgp substrates.


Brain/metabolism , Grasshoppers , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Blood-Brain Barrier/metabolism , Central Nervous System Agents/metabolism , Chromatography, Liquid , Dogs , Drug Discovery , In Vitro Techniques , Madin Darby Canine Kidney Cells , Mass Spectrometry , Models, Animal , Permeability , Verapamil/pharmacology
13.
Mol Pharmacol ; 64(3): 659-69, 2003 Sep.
Article En | MEDLINE | ID: mdl-12920202

CYP1A2 polymorphism has been well studied in white persons and Asians but not in Africans. We performed CYP1A2 genotype and phenotype analysis using caffeine in Ethiopians living in Ethiopia (n = 100) or in Sweden (n = 73). We sequenced the CYP1A2 gene using genomic DNA from 12 subjects, which revealed a novel intron 1 single-nucleotide polymorphism (SNP), -730C>T. We developed SNP-specific polymerase chain reaction-restriction fragment length polymorphism genotyping and molecular haplotyping methods for the intron 1 SNPs, and four different haplotypes were identified: CYP1A2*1A (wild-type for all SNPs), CYP1A2*1F (-164A), CYP1A2*1J (-740G and -164A), and CYP1A2*1K (-730T, -740G, and -164A), having frequencies of 39.9, 49.6, 7.5, and 3.0%, respectively. The frequency of CYP1A2*1J and CYP1A2*1K among Saudi Arabians (n = 136) was 5.9% and 3.6%, and among Spaniards (n = 117) 1.3% and 0.5%, respectively. Functional significance of the different intron 1 haplotypes was analyzed. Subjects with CYP1A2*1K had significantly decreased CYP1A2 activity in vivo, and reporter constructs with this haplotype had significantly less inducibility with 2,3,7,8-tetrachlorodibenzo-p-dioxin in human B16A2 hepatoma cells. Electrophoretic mobility shift assay using nuclear extracts from B16A2 cells revealed a specific DNA binding protein complex to an Ets element. Efficient competition was obtained using oligonucleotide probes carrying the wt sequence and Ets consensus probe, whereas competition was abolished using probes with the -730C>T SNP alone or in combination with -740T>G (CYP1A2*1K). The results indicate a novel polymorphism in intron 1 of importance for Ets-dependent CYP1A2 expression in vivo and inducibility of the enzyme, which might be of critical importance for determination of interindividual differences in drug metabolism and sensitivity to carcinogens activated by CYP1A2.


Cytochrome P-450 CYP1A2/biosynthesis , Cytochrome P-450 CYP1A2/genetics , Gene Expression Regulation, Enzymologic/genetics , Haplotypes/genetics , Introns/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Analysis of Variance , Base Sequence , Enzyme Induction/genetics , Ethiopia , Genetic Linkage/genetics , Humans , Molecular Sequence Data , Polymorphism, Genetic/genetics , Sweden , Tumor Cells, Cultured
14.
Br J Clin Pharmacol ; 56(3): 337-40, 2003 Sep.
Article En | MEDLINE | ID: mdl-12919185

AIMS: To determine CYP2C19 and CYP2D6 activity in patients with multiple sclerosis (MS) before and during interferon (IFN)-beta treatment. METHODS: CYP2C19 and CYP2D6 activities were assessed using the probe drugs mephenytoin and debrisoquine, respectively. Urinary mephenytoin (S/R) and debrisoquine (debrisoquine/hydroxy-debrisoquine) metabolic ratios (MR) were determined in 10 otherwise healthy Caucasian multiple sclerosis (MS) patients in the initial stage of the disease, prior to and 1 month after commencing treatment with IFN-beta (Avonex, Rebif or Betaferon). In addition, CYP2C19*2, CYP2C19*3, CYP2D6*3, CYP2D6*4, and CYP2D6*5 genotyping was performed. RESULTS: There was no significant difference in the (S)/(R) mephenytoin ratio (mean difference 0.04; 95% CI -0.03, 0.11) or the debrisoquine MR (mean difference 0.29; 95% CI -0.44, 1.02) before and during regular IFN-beta treatment in extensive metabolizers (EM) (P = 0.5 and P = 0.4 for the respective probe drugs; n = 9 subjects). There were also no differences between the different IFN-beta treatments (P = 0.6 for the (S)/(R) mephenytoin ratio and P = 0.7 for the debrisoquine MR; anova; n = 10). CONCLUSIONS: IFN-beta treatment did not affect the activity of CYP2C19 or CYP2D6. The results suggest that it is safe to administer CYP2C19 or CYP2D6 substrates, without dose adjustment, to patients treated with IFN-beta.


Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2D6/metabolism , Interferon-beta/therapeutic use , Mixed Function Oxygenases/metabolism , Multiple Sclerosis/drug therapy , Adult , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6/genetics , Female , Genotype , Humans , Male , Middle Aged , Mixed Function Oxygenases/genetics , Multiple Sclerosis/metabolism , Phenotype
...